

Journal of Organometallic Chemistry 528 (1997) 91-94

Pentamethylcyclopentadienylnickelnitrosyl: synthesis and photoelectron spectrum ¹

Jennifer C. Green *, Claire Underwood

Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK

Received 6 May 1996; revised 7 July 1996

Abstract

The synthesis and photoelectron spectrum of Ni(η -C₅Me₅)(NO) are reported. The vertical ionisation energies of the first three photoelectron bands are all lower than those of Ni(η -C₅H₅)(NO). The magnitudes of the shifts indicate that the first band should be assigned to a ${}^{2}E_{1}$ ion state, the second to both a ${}^{2}A_{1}$ and a ${}^{2}E_{2}$ ion state and the third to a ${}^{2}E_{1}$ ion state. The first band shows a high energy shoulder, with a separation of $0.23 \pm 0.1 \text{ eV}$ (1855 $\pm 81 \text{ cm}^{-1}$) indicating excitation of an NO stretch, as was found for Ni(η -C₅H₅)(NO).

Keywords: Nickel; Cyclopentadienyl; Photoelectron spectroscopy; Electronic structure; Nitrosyl

1. Introduction

In an earlier study, photoelectron (P.E.) spectra, with photon energies varying from 18-120eV, were measured for Ni(η^5 -C₅H₅)(NO) [1]. Relative partial P.E. cross-sections and branching ratios were evaluated for the first three valence ionisation bands. The second band, though the lowest in intensity at low photon energies, becomes the most intense at photon energies above 38 eV, and at high photon energies it dominates the spectrum, achieving a branching ratio of 66%. This behaviour indicates a high degree of metal character for the orbitals from which this ionisation band originates. Density functional calculations were carried out to determine energies of ionisation to the lowest lying states of $[Ni(\eta^5-C_5H_5)(NO)]^+$, as well as the corresponding photoionisation cross-sections and the resulting branching ratios using LCGTO-DF and LDKL-DF methods respectively. The metal character found for the four orbital sets was 22% (8e1) 91% (15a1) 96% (4e2) and 51% (7e1). Both experimental and theoretical investigations lead to an ion state ordering ${}^{2}E_{1} < {}^{2}E_{2} \sim {}^{2}A_{1} < {}^{2}$ E_1 , and an assignment of 2E_1 states to the first and third bands with the 2A_1 and 2E_2 states comprising the second band. This differs from the original assignment in the literature, where the ${}^{2}A_{1}$ ionisation was assigned to a high energy shoulder on the first band [2,3]. The separation of this shoulder from the main band maximum of 0.23 eV ($1850 \pm 81 \text{ cm}^{-1}$) suggests that it may be caused by excitation of the NO stretching vibration in the ion. The neutral molecule has an NO stretch of 1832 cm^{-1} ; the calculated wavenumbers for the neutral molecule and the cation are 1845 cm^{-1} and 1911 cm^{-1} respectively. Agreement between calculated and experimental ionisation energies (I.E.s) and good matching of the theoretical and measured branching ratios lent strong support to the new assignment of the P.E. spectrum.

Branching ratio data on the low I.E. P.E. bands $Ni(\eta^5-C_5H_5)(NO)$ have also been obtained by Li et al. [4]. The experimental findings are in good agreement with our own, but these authors favour the original assignment of ionisation of both the $8e_1$ and the $15a_1$ orbitals as giving rise to the first band. This is in part due to *their* I.E. and branching ratio calculations (using the continuum MS-X α method) being in better agreement with the original assignment, and in part a result of a different deconvolution of the first band.

Extensive work on methylation and permethylation of metallocenes has established the magnitude of I.E. shifts found for metal and cyclopentadienyl P.E. bands on ring substitution, that of the cyclopentadienyl bands being greater than that of the metal d bands [5]. Inter-

^{*} Corresponding author.

¹ This paper is dedicated to Malcolm Green on the occasion of his 60th birthday.

⁰⁰²²⁻³²⁸X/97/S17.00 © 1997 Elsevier Science S.A. All rights reserved. *PII* S0022-328X(96)06583-7

mediate shifts are found for bands arising from orbitals of mixed metal cyclopentadienyl character, such as the e_{1g} ionisations of metallocenes. Consideration of the I.E. shifts on monomethylation obtained from the He(I) spectra of Ni(η^5 -C₅H₅)(NO) and Ni(η^5 -C₅H₄Me)(NO) [1] showed them to be consistent with the relative amounts of cyclopentadienyl character deduced for the associated orbitals from the cross-section variation and from the density functional calculations. However, lack of five-fold symmetry in the monomethylated compound leads to a lifting of the degeneracy of the e orbitals of the cyclopentadienyl ring, and consequently differing fine structure for the first band, with no wellresolved high energy shoulder, as is shown in the P.E. spectrum of the parent Ni(η^5 -C₅H₅)(NO). Ni(η^5 - C_5Me_5)(NO) should possess C_{5v} symmetry, and would be more likely to show a similar fine structure for the first band. Also, five methyl groups should result in more substantial shifts and help ascertain whether the first band consists of one primary ionisation process of mainly ligand character or two, one of ligand and one of metal character as proposed by Li et al. [4].

We, therefore, set out to synthesise Ni(η^5 -C₅Me₅)(NO) and to measure its P.E. spectrum. We also obtained a theoretical estimate of the I.E. shifts by carrying out density functional calculations on Ni(η^5 -C₅H₅)(NO) and Ni(η^5 -C₅Me₅)(NO).

2. Experimental

2.1. $Ni(\eta^{5}-C_{5}Me_{5})(NO)$ [6]

A solution of Ni(η^5 -C₅Me₅)₂ (2.5 g, 7.6 mmol) in pentane (100 cm³) was stirred vigorously at room temperature under an atmosphere of NO until there was no further uptake of NO gas. The reaction mixture changed from green to brown and a brown precipitate formed. The solution was removed by filtration, and the residue washed with pentane (3 × 300 cm³). The solvent was removed from the filtrate and washings, leaving a brown solid. Ni(η^5 -C₅Me₅)(NO) was sublimed from the solid at 110 °C as a bright orange microcrystalline solid. Yield 0.5 g (29%): NMR (C₆D₆) ¹H δ 2.00 (s): mass spectrum found m/z 223 (M⁺), 193 (M⁺ – NO). IR ν (Nujol)/cm⁻¹ 1787 (N–O).

The He(I) spectrum of Ni(η^5 -C₅Me₅)(NO) was obtained on a PES Laboratories 0078 spectrometer. The spectrum was calibrated using He, Xe and N₂.

Density functional calculations were carried out using the GAUSSIAN 94 code [7]. Full geometry optimisations were performed on both Ni(η^5 -C₅H₅)(NO) and Ni(η^5 -C₅Me₅)(NO) using local spin density approximation (Slater exchange [8] and Vosko, Wilk and Nusair correlation functionals [9]) and employing LanL2DZ basis sets [10–12].

3. Results and discussion

The He(I) P.E. spectrum is given in Fig. 1 and the vertical I.E. of key features are given in Table 1. It resembles that of Ni(η^5 -C₅H₅)(NO) in showing three main ionisation bands below 10eV. These may be assigned in an analogous way: namely band A is assigned to the ²E₁ ground state of the molecular ion, band B to both the ²E₂ and ²A₁ excited states and band C to a ²E₁ excited state. Orbital 7e₁ associated with band C is bonding between the cyclopentadienyl e₁ π orbitals, the Ni d_{xz} and d_{yz} and the NO 2 π orbitals, whereas orbital 8e₁ associated with band A is mainly localised on the two ligands and has very little metal character; the orbitals associated with band B are 15a₁ which is largely Ni d_{z²} and 4e₂ which are Ni d_{xy} and d_{x² = y²}.

The I.E. shifts on permethylation are consistent with the new band assignment but are problematic with the old one. Typical shifts on permethylating metallocenes are 1.0eV for metal bands and 1.2eV for e_{1g} bands and 1.4eV for e_{1u} bands, all to lower I.E. [5]. Band A shifts most by 1.03eV, band B shifts least by 0.71 eV and band C shows intermediate behaviour shifting by 0.90eV. This is consistent with the relative amounts of cyclopentadienyl character calculated for the associated orbitals.

Most crucially, within experimental error, the separation between the band maximum of band A and its high energy shoulder is unaltered on permethylation. The value obtained of $0.23(\pm 0.01)$ eV corresponds to a

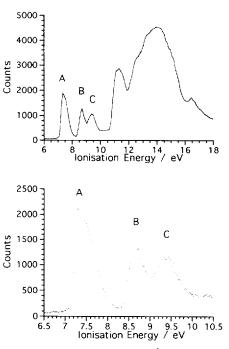


Fig. 1. He I P.E. spectrum of Ni(η^5 -C₅Me₅)(NO).

Table 1 I.E., ion states and corresponding molecular orbitals for the P.E. spectra of Ni(η^{5} -C₅Me₅)(NO)(Cp^{*}NiNO), and Ni(η^{5} -C₅H₅XNO)(CpNiNO)

Ionisation energy/eV		Ion states	MO ^a
Cp* NiNO	(CpNiNO)		
7.30, 7.52	8.33, 8.56	${}^{2}E_{1}$	8e1
8.64	9.35	${}^{2}A_{1}, {}^{2}E_{2}$	$15a_1, 4e_2$
9.38	10.28	${}^{2}E_{1}$	7e1
11.30	12.64	•	
14.04	13.90		
	Cp*NiNO 7.30, 7.52 8.64 9.38 11.30	Cp*NiNO (CpNiNO) 7.30, 7.52 8.33, 8.56 8.64 9.35 9.38 10.28 11.30 12.64	$\begin{array}{c cccc} \hline \hline Cp^* NiNO & (CpNiNO) \\ \hline \hline 7.30, 7.52 & 8.33, 8.56 & {}^2E_1 \\ 8.64 & 9.35 & {}^2A_1, {}^2E_2 \\ 9.38 & 10.28 & {}^2E_1 \\ 11.30 & 12.64 \end{array}$

^a MO numbering is as given in Ref. [1].

wavenumber of $1855(\pm 81)$ cm⁻¹, consistent with excitation of an NO stretching mode. The neutral molecule shows a band in the IR at 1787 cm⁻¹ assigned to such a mode. If the high energy shoulder originated from a metal a_1 ionisation, as proposed by Li et al. [4], the separation should increase by ca. 0.3 eV.

Density functional calculations were carried out on both Ni(η^5 -C₅H₅)(NO) and Ni(η^5 -C₅Me₅)(NO). The geometries were optimized subject to the constraint of C_{5v} symmetry. Optimized bond lengths are given in Table 2. As found previously [1], density functional calculations, even at the local level, give good geometry predictions for Ni(η^5 -C₅H₅)(NO).

Density functional one-electron energies bear no formal relation to I.E.s: in ab initio SCF calculations, Koopmans' theorem provides an approximate link between orbital energies and I.E.s. However, paradoxically, the pattern of DFT energies often relates more closely to the I.E. bands of a P.E. spectrum than do SCF MO energies. Also, in a closely related series of compounds, the shifts in the I.E. bands are well modelled by the shifts in the DFT one-electron energies. For Ni(η^{5} - C_5H_5 (NO) the negative of the Kohn–Sham ground state eigenvalues were all smaller than the experimental I.E.s, as is commonly found, but gave a good estimate of the separation of the ionisation bands [1]. The Kohn-Sham ground state eigenvalues found for both $Ni(\eta^5-C_5H_5)(NO)$ and $Ni(\eta^5-C_5Me_5)(NO)$, and the shifts on permethylation are shown in Table 3. The changes found in the eigenvalues on permethylation are

Table 2

Optimised bond lengths (Å) for Ni(η^{5} -C₅Me₅)(NO)(Cp⁺ NiNO), and Ni(η^{5} -C₅H₅)(NO) (CpNiNO) and experimental bond lengths (Å) for Ni(η^{5} -C₅H₅)(NO)

Bond	Cp * NiNO calc.	CpNiNO calc.	CpNiNO expt. ^a
Ni-C	2.109	2.120	2.11
Ni–N	1.609	1.611	1.626
N-O	1.214	1.205	1.165
C-C (ring)	1.443	1.437	1.43
C-CH ₃	1.484		
C-H	1.105, 1.108	1.090	1.09

^a Ref. [13].

Table 3

Calculated one-electron energies (eV) for Ni(η^5 -C₅H₅)(NO), Ni(η^5 -C₅Me₅)(NO) and their differences $\Delta \varepsilon$ compared with experimental differences in I.E.

CpNiNO	Cp * NiNO	$\Delta \epsilon$ theory	Δ I.E. expt.	Orbital
-6.44	- 5.51	0.93	1.03	e ₁
- 7.01	-6.41	0.60	0.71	e,
-7.09	-6.56	0.53	0.71	a
- 8.51	- 7.69	0.82	0.90	e

very close to the changes in I.E. found experimentally: the estimated shifts are all ca. 0.1 eV less than those found. Hence, further confirmation of the correctness of the new assignment is provided by these theoretical calculations.

4. Conclusion

Comparison of the P.E. spectrum of Ni(η^{5} - C_5Me_5 (NO) with that of Ni(η^5 -C₅H₅)(NO) indicates that the first band has only one orbital origin. The magnitudes of I.E. shift on permethylation of the first three bands show the second band to have least cyclopentadienyl character, and the first band to have most cyclopentadienyl character. This is in agreement with earlier observations based on variable photon energy P.E. spectroscopy of Ni(η^5 -C₅H₅)(NO) and density functional calculations. A high energy shoulder is observed on the first band of Ni(η^5 -C₅Me₅)(NO) and shows an identical separation from the band maximum, as is found for the comparable feature of Ni(η^{5} - C_5H_5)(NO). The size of the separation of these shoulders suggests that they result from excitation of an NO stretch in the molecular ion.

The assignment of the P.E. spectra of both Ni(η^5 -C₅H₅)(NO) and Ni(η^5 -C₅Me₅)(NO) is that the first and third bands correspond to ²E₁ ion states and the second corresponds to both ²A₁ and ²E₂ ion states.

References

- C.N. Field, J.C. Green, M. Mayer, V.A. Nasluzov, N. Rösch and M.R.F. Siggel, *Inorg. Chem.*, 35 (1996) 2504.
- [2] S. Evans, M.F. Guest, I.H. Hillier and A.F. Orchard, J. Chem. Soc. Farad. Trans. II, (1974) 417.
- [3] I.H. Hillier and V.R. Saunders, Mol. Phys., 23 (1972) 449.
- [4] X. Li, J.S. Tse, G.M. Bancroft, R.J. Puddephat, Y.F. Hu and K.H. Tan, *Inorg. Chem.*, 35 (1996) 2515.
- [5] J.C. Green, Struct. Bonding, 43 (1981) 37.
- [6] R.B. King, Organometallic Syntheses, Academic Press, New York, 1965.
- [7] M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T.A. Keith, G.A. Petersson, J.A. Montgomery, K. Ragavachari, M.A. Al-Laham, V.G. Zakrewski, J.V. Ortiz, J.B. Foresman, J. Ciolowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y.

Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Repolge, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez and J.A. Pople, GAUSSIAN 94, Revision A.1, 1995.

- [8] J.C. Slater, Quantum Theory of Molecules and Solids Vol. 4, The Self-Consistent Field for Molecules and Solids, McGraw-Hill, New York, 1974.
- [9] S.H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 58 (1980) 1200.
- [10] P.J. Hay and W.R. Wadt, J. Chem. Phys., 82 (1985) 270.
- [11] W.R. Wadt and P.J. Hay, J. Chem. Phys., 82 (1985) 284.
- [12] P.J. Hay and W.R. Wadt, J. Chem. Phys., 82 (1985) 299.
- [13] A.P. Cox, A.H. Brittain and M.J. Whittle, J. Mol. Spectrosc., 35 (1970) 49.